Section 1. Découvrir le NLP
1. Traitement du langage naturel avec Python
2. Connaître les prérequis théoriques et techniques
3. Utiliser les fichiers d’exercice
4. Comprendre le NLP
5. Découvrir les domaines et les exemples d’application du NLP
6. Installer Anaconda
7. Aborder l’environnement Jupyter
8. Comprendre le pipeline de modélisation NLP
9. Support pdf
– Utiliser les fichiers d’exercice
– Comprendre le NLP
– Découvrir les domaines et les exemples d’application du NLP
– Installer Anaconda
– Aborder l’environnement Jupyter
– Comprendre le pipeline de modélisation NLP
10. TP
11. Quiz
Section 2. Traiter un texte avec Python
1. Stocker un texte brut dans une structure de données Python
2. Utiliser Pandas pour lire les données
3. Comprendre les expressions régulières
4. Utiliser les expressions régulières avec le module Re de Python
5. Étudier les fonctions les plus populaires du module Re
6. Support pdf
– Stocker un texte brut dans une structure de données Python
– Utiliser Pandas pour lire les données
– Comprendre les expressions régulières
– Utiliser les expressions régulières avec le module Re de Python
– Étudier les fonctions les plus populaires du module Re
7. TP
8. Quiz
Section 3. Préparer les données
1. Aborder les étapes de préparation des données
2. Réaliser un exemple de nettoyage de données
3. Supprimer les stopwords
4. Réaliser le stemming avec NLTK
5. Pratiquer la lemmatization avec NLTK
6. Comparer le stemming et la lemmatization
7. Support pdf
– Aborder les étapes de préparation des données
– Supprimer les caractères de ponctuation
– Supprimer les stopwords
– Réaliser le stemming avec NLTK
– Réaliser la lemmatization avec NLTK
– Comparer le stemming et la lemmatization
9. TP
10. Quiz
Section 4. Transformer un texte en chiffres
1. Comprendre la vectorisation avec CountVectorizer
2. Utiliser CountVectorizer
3. Effectuer une vectorisation contextuelle avec N-Grams
4. Étudier TF-IDF
5. Utiliser TF-IDF
6. Appréhender le feature engineering
7. Ajouter des features aux données
8. Analyser les features
9. Support pdf
– Comprendre la vectorisation
– Comprendre la vectorisation avec CountVectorizer
– Utiliser CountVectorizer
– Effectuer une vectorisation contextuelle avec N-Grams
– Étudier TF-IDF
– Utiliser TF-IDF
– Appréhender le feature engineering
10. TP
11. Quiz
Section 5. Comprendre l’expérience machine learning – NLP
1. Apprendre la méthode K-fold
2. Comprendre la matrice de confusion d’un modèle de classification
3. Comprendre les mesures de performance d’un modèle NLP
4. Aborder l’overfitting (le surapprentissage)
6. Support pdf
– Apprendre la méthode K-fold
– La validation croisée avec Scikit-learn
– Matrice de Confusion d’un modèle de classification
– Les mesures de performance d’un modèle NLP
7. Quiz